What is the value of tan 300

tangent

Calculate the tangent

In order to calculate tangent values ​​with the help of your pocket calculator, it does not matter whether the angles are in degrees (e.g. \ (90 ° \)) or in radians (e.g. \ (\ frac {\ pi} {2} \)) given are. The only important thing is that you go to the setup of your pocket calculator and choose the correct setting:
DEG degree) stands for the degree, RAD (engl. radian) for radians.

The following table shows some important tangent values:

\ begin {array} {r | c | c | c | c | c | c | c | c | c}
\ alpha & 0 ° & 30 ° & 45 ° & 60 ° & 90 ° & 120 ° & 135 ° & 150 ° & 180 ° \
& {\ color {gray} 0} & {\ color {gray} \ frac {\ pi} {6}} & {\ color {gray} \ frac {\ pi} {4}} & {\ color {gray} \ frac {\ pi} {3}} & {\ color {gray} \ frac {\ pi} {2}} & {\ color {gray} \ frac {2 \ pi} {3}} & {\ color { gray} \ frac {3 \ pi} {4}} & {\ color {gray} \ frac {5 \ pi} {6}} & {\ color {gray} \ pi} \
\ hline
\ tan \ alpha & 0 & \ frac {\ sqrt {3}} {3} & 1 & \ sqrt {3} & \ text {n. def.} & - \ sqrt {3} & -1 & - \ frac {\ sqrt {3}} {3} & 0 \
\ hline
&&&&&&&&&\\
&&&&&&&&&\\
\ hline
\ alpha & 180 ° & 210 ° & 225 ° & 240 ° & 270 ° & 300 ° & 315 ° & 330 ° & 360 ° \
& {\ color {gray} 0 \! + \! \ pi} & {\ color {gray} \ frac {\ pi} {6} \! + \! \ pi} & {\ color {gray} \ frac { \ pi} {4} \! + \! \ pi} & {\ color {gray} \ frac {\ pi} {3} \! + \! \ pi} & {\ color {gray} \ frac {\ pi } {2} \! + \! \ Pi} & {\ color {gray} \ frac {2 \ pi} {3} \! + \! \ Pi} & {\ color {gray} \ frac {3 \ pi } {4} \! + \! \ Pi} & {\ color {gray} \ frac {5 \ pi} {6} \! + \! \ Pi} & {\ color {gray} \ pi \! + \ ! \ pi} \
\ hline
\ tan \ alpha & 0 & \ frac {\ sqrt {3}} {3} & 1 & \ sqrt {3} & \ text {n. def.} & - \ sqrt {3} & -1 & - \ frac {\ sqrt {3}} {3} & 0
\ end {array}

In the table above we can observe an interesting property:

\ (\ tan (\ alpha + 180 °) = \ tan (\ alpha + \ pi) = \ tan \ alpha \)

We can calculate further values ​​from known or given tangent values.

More about trigonometry

You can find more information about trigonometry in the following chapters.

Basics 
Trigonometric functions 
Unit circle 
Trigonometric functions 
Sine\ (\ sin \ alpha = \ frac {\ text {Opposite cathet}} {\ text {Hypotenuse}} \)
Cosine\ (\ cos \ alpha = \ frac {\ text {adjacent}} {\ text {hypotenuse}} \)
tangent\ (\ tan \ alpha = \ frac {\ text {opposite side}} {\ text {adjacent side}} \)
Reciprocals 
Cosekans\ (\ csc \ alpha = \ frac {\ text {Hypotenuse}} {\ text {Opposite cathet}} = \ frac {1} {\ sin \ alpha} \)
Secans\ (\ sec \ alpha = \ frac {\ text {Hypotenuse}} {\ text {Attached}} \ phantom {1 \:} = \ frac {1} {\ cos \ alpha} \)
Cotangent\ (\ cot \ alpha = \ frac {\ text {adjacent side}} {\ text {opposite side}} = \ frac {1} {\ tan \ alpha} \)